

UNIVERSITY OF TORONTO TIals Network soins primaires

Adaptive Platform Trial Scientific Meeting

September 28 – 29 • Toronto, Canada

P-value and Bayesian analysis in randomized-controlled trials in child health research published over ten years, 2007 to 2017

Alex Aregbesola, MD, PhD

Endowered Chair, Pediatric Emergency Medicine Assistant Professor, Department of Pediatrics and Child Health The Children's Hospital Research Institute of Manitoba Rady Faculty of Health Sciences, University of Manitoba

Collaboration / Affiliation

The Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada

Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada

Department of Pediatrics and the Alberta Research Centre for Health Evidence (ARCHE), University of Alberta, Edmonton, Canada

Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine and Meta Research Innovation Center at Stanford (METRICS), Stanford, CA

The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada and University College London, London, UK

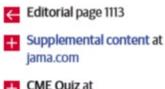
Authors

- Alex Aregbesola
- Allison Gates
- Amanda Coyle
- Shannon Sim
- Ben Vandermeer
- Megan Skakum
- Despina Contopoulos-Ioannidis
- Anna Heath
- Lisa Hartling
- Terry P. Klassen

BACKGROUND/RATIONALE

Overview of two statistical frameworks – Bayesian statistics versus null hypothesis significance testing

Limitations of the frequentist approach in randomizedcontrolled trials


Original Investigation

Evolution of Reporting *P* Values in the Biomedical Literature, 1990-2015

David Chavalarias, PhD; Joshua David Wallach, BA; Alvin Ho Ting Li, BHSc; John P. A. Ioannidis, MD, DSc

IMPORTANCE The use and misuse of *P* values has generated extensive debates.

OBJECTIVE To evaluate in large scale the *P* values reported in the abstracts and full text of biomedical research articles over the past 25 years and determine how frequently statistical information is presented in ways other than *P* values.

BACKGROUND/ RATIONALE

BACKGROUND/ RATIONALE

Annals of Internal Medicine[®]

Search Anywhere

LATEST ISSUES IN THE CLINIC JOURNAL CLUB MULTIMEDIA CME / MOC AUTHORS / SUBMIT

Academia and Clinic | 15 June 1999

Toward Evidence-Based Medical Statistics. 2: The Bayes Factor

Steven N. Goodman, MD, PhD 🔛

RESEARCH QUESTIONS

- Has the inferential statistical framework in child health research changed?
- Is there a clustering around P-values of significance in RCTs in child health research papers?
- Is the Bayesian method a good alternative in conducting child health research?
- What is the expected impact of our study on the future of child health research?

OBJECTIVES

- We investigated the extent, if any, to which the inferential statistical framework in child health research has changed over 10-years
- Is there a clustering around P-values of significance in RCTs in child health research papers?

METHODS

- A review of randomly selected RCTs
- The present protocol has been registered within the Open Science Framework platform (registration ID: https://osf.io/aj2df)
- We leveraged a pre-existing sample of child health RCTs published in 2007 (n = 300) with a comparable sample of child health RCTs published in 2017 (n=300)
- A total of 600 RCTs

Inclusion criteria

- ✓ Published RCTs in child health
- ✓ Full-text articles in the English language.
- No restriction on settings in which the study was conducted, intervention, comparator or the type of outcome.
- ✓ Search strategy developed and executed.

METHODS

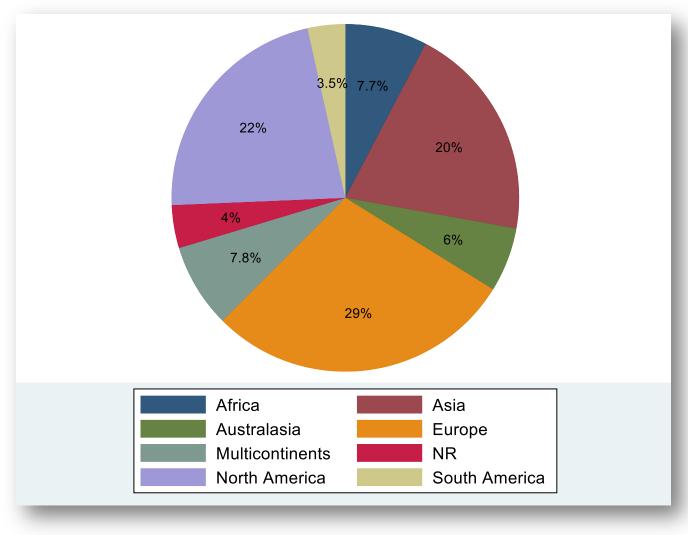
Bayesian/Frequentist Data Extraction Guidelines

Data Extraction Guidelines:

*Use <u>ALL AVAILABLE INFORMATION</u> (including protocols, companion articles references in the publication, and records of trial registration) to complete data extraction. We will include a <u>MAXIMUM OF THREE</u> sources per trial:

- The trial identified as part of our sample;
- 2. The trial register, if available; and
- <u>EITHER</u> the published protocol or methods document, if cited in our original study (first choice) <u>OR</u> the sentinel trial in the case of multiple publications, if cited in our original study (second choice).

If trial registration is not declared, search, in order, the trial title/key words, corresponding author, first author, and/or last author in each of:


- ICTRP (apps.who.int/trialsearch/)
- Current Controlled Trials (<u>www.controlled-trials.com/mrct/</u> -- select all 5 registers included in the meta-register)
- Google

METHODS

DATA ANALYSIS

- U We analyzed the data using
- Stata (v. 16.1; StataCorp, College Station, Texas, United States) and R.
- We used a non-informative Cauchy prior with parameters 0 and 2.5 (as recommended by Gelman)
- □ We also used "Jeffreys non-informative prior" for the Beta distribution and a Dirichlet with all parameters set to 0.5.

RESULTS: RCTs characteristics Distribution of RCTs by continent

Distribution of RCTs by continent and year of publication

Continent	Publicati	Total		
	2007	2017		
Africa	18	28	46	
Asia	39	82	121	
Australasia	17	19	36	
Europe	105	67	172	
Multi-continent	23	24	47	
NR	17	7	24	
North America	71	62	133	
South America	10	11	21	
Total	300	300	600	
P for difference (Pearson X^2) = 0.000				

Distribution of RCTs by continent and year of publication

Continent	Mean difference	95% CI lower	95% CI upper	Probability difference >=0	
Africa	0.033	-0.010	0.076	0.937	
Asia	0.141	0.077	0.204	1.000	
Australasia	0.007	-0.033	0.043	0.634	
Europe	-0.125	-0.196	-0.054	0.000	
Multi-continent	0.003	-0.040	0.046	0.560	
North America	-0.030	-0.096	0.036	0.188	
NR	-0.033	-0.066	-0.002	0.018	
South America	0.003	-0.028	0.033	0.580	
CI – Credible interval NR – Not reported					

Distribution of RCTs type by year of publication

RCT type	Publicat	Publication year		
	2007	2017		
Cluster	20	38	58	
Crossover	21	12	33	
Factorial	7	1	8	
Other (specify)	5	2	7	
Parallel	244	243	487	
Split body	3	4	7	
	300	300	600	
P for difference(Fisher's exact) = 0.013				

Distribution of RCTs type by year of publication

RCT type	Mean difference	95% CI lower	95% CI upper	Probability difference >=0
Cluster	0.060	0.015	0.108	0.994
Crossover	-0.030	-0.067	0.007	0.054
Factorial	-0.020	-0.040	-0.002	0.013
Other (specify)	-0.010	-0.030	0.007	0.123
Parallel	-0.003	-0.066	0.060	0.466
Split body	0.003	-0.014	0.022	0.648
CI – Credible interval				

Distribution of RCT control type by year of publication

Control type	Publication year 2007 2017		Total	
Active Intervention	138	127	265	
No intervention	32	45	77	
Other (specify)	46	53	99	
Placebo	72	55	127	
Usual care	1	0	1	
Wait-list control	11	20	31	
Total	300	300	600	
P for difference(Fisher's exact) = 0.088				

Distribution of RCTs control type by year of publication

Control type	Mean difference	95% CI lower	95% CI upper	Probability difference >=0
Active Intervention	-0.036	-0.118	0.043	0.189
No intervention	0.043	-0.010	0.097	0.942
Other (specify)	0.023	-0.038	0.081	0.775
Placebo	-0.056	-0.122	0.009	0.045
Usual care	-0.003	-0.014	0.005	0.182
Wait-list control	0.030	-0.004	0.066	0.950
CI – Credible interval				

Distribution of RCTs number of centers by year of publication

Number of centers	Publication year		Total		
	2007	2017			
Multicenter	112	132	244		
Single center	142	167	309		
Unclear	46	1	47		
Total	300	300	600		
P for difference(Fisher's exact)<0.001					

Distribution of RCTs hypothesis type by year of publication

RCT hypothesis	Publication year		
	2007	203	17
		Total	
A priori/alternative	33	37	70
N/A	180	155	335
Null hypothesis	16	20	36
Null hypothesis + a priori	1	0	1
Other (specify)	70	88	158
Total	300	300	600
P for difference(Fisher's exact)= 0.204			

Distribution of RCTs hypothesis type by year of publication

Study hypothesis	Mean difference	95% CI lower	95% CI upper	Probability difference >=0
A priori/alternative	-0.019	-0.124	0. 085	0.361
Null hypothesis	0.004	-0.076	0.087	0.544
Null hypothesis + a	-0.009	-0.035	0.010	0.151
Other (specify)	0.024	-0.093	0.142	0.065
CI – Credible interval				

Power of RCTs by year of publication

Power of trial calculated	Publication year		Total		
	2007	2017			
No	281	274	555		
Yes	19	26	45		
Total	300	300	600		
P for difference (Pearson X ²)= 0.278					

Sample size of RCTs by year of publication

Sample size	Publicat	tion year	Total	
calculated	2007	2017		
No	176	133	309	
Yes	124	167	291	
Total	300	300	600	
P value for difference (Fisher's exact) X ² =0.378				

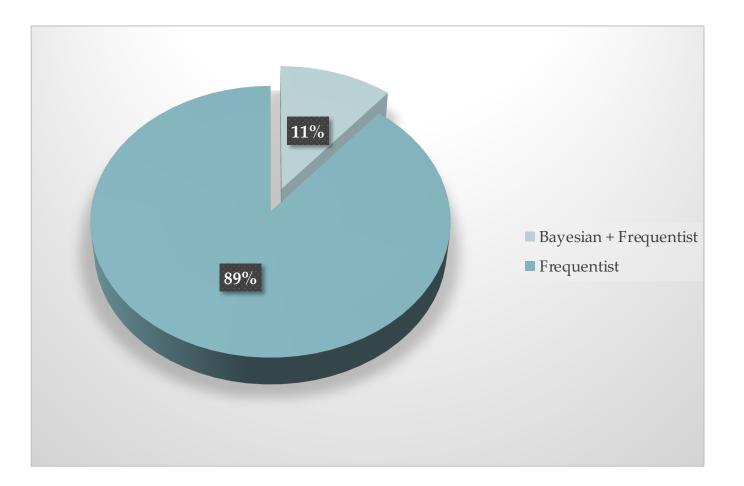
Interim analysis of RCTs by year of publication

Interim analysis reported	Public 2007	ation year 2017	Total	
No	282	288	570	
Yes	18	12	30	
Total	300	300	600	
P for difference(Pearson X ²)= 0.261				

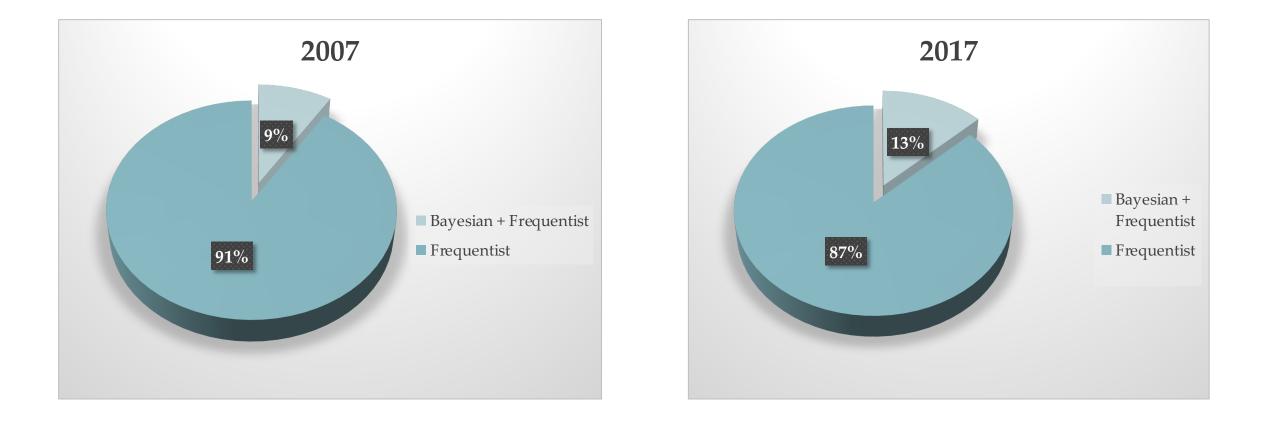
Primary outcome analysis of RCTs by year of publication

Primary outcome analysis based on	Publication year		
	2007	20	017
		Total	
95% confidence interval	21	20	41
Other (specify)	69	78	147
P-value + Bayesian inferential	0	2	2
P-value only (frequentist)	210	200	410
Total	300	300	600
P for difference(Fisher's exact)= 0.487			

Primary outcome analysis of RCTs by year of publication

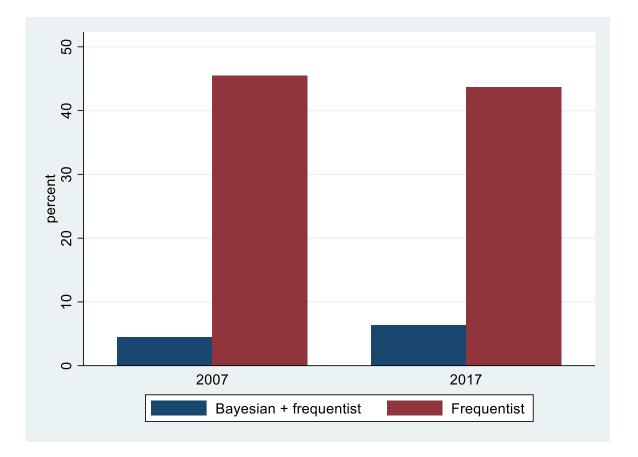

Primary outcome analysis based on	Mean difference	95% CI lower	95% CI upper	Probability difference >=0
95% confidence interval	-0.003	-0.043	0.037	0.443
Other (specify)	0.030	-0.038	0.097	0.805
P-value + any Bayesian	0.007	-0.004	0.019	0.926
P-value only (frequentist)	-0.033	-0.109	0.039	0.186

CI – Credible interval

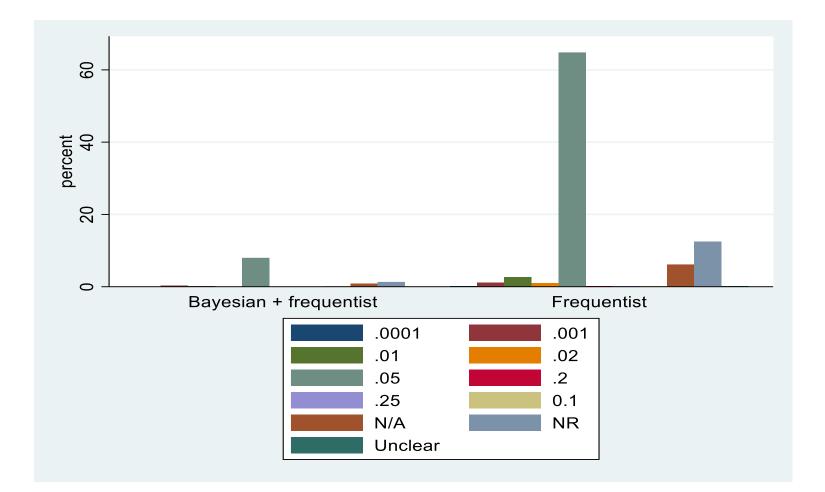

MCID of RCTs by year of publication

MCID reported	Public 2007	ation year 2017	Total	
No	266	285	551	
Yes	34	14	48	
Total	300	299	599	
P for difference(Pearson X ²)= 0.003				

Type of statistical frameworks in the 600 RCTs



Types of statistical frameworks by year of publication in the 600 RCTs



Types of statistical frameworks by year of publication in the 600 RCTs

Conclusions	Public	Total		
	2007	2017		
Bayesian + Frequentist	27	38	65	
Frequentist	273	262	535	
Total	300	300	600	
P for difference(Pearson X2)= 0.148				

Types of statistical frameworks within each year of publication, 2007 and 2017 Clustering of P-value of significance

Clustering of P-value of significance

P-value of	Frequency	Percent		
significance				
.0001	1	0.2		
.001	9	1.5		
.01	17	2.8		
.02	6	1.0		
.05	437	72.8		
.2	1	0.2		
.25	1	0.2		
0.1	2	0.3		
N/A	42	7.0		
NR	83	13.8		
Unclear	1	0.2		
Total	600	100.00		
N/A, not applicable; NR, not reported				

Clustering of P-value of significance

P-value level of significance for primary outcome	Frequentist	Bayesian plus frequentist	Total	
.05	389	48	437	
NR	75	8	83	
N/A	37	5	42	
.01	16	1	17	
.001	7	2	9	
.02	6	0	6	
0.1	1	1	2	
.0001	1	0	1	
.2	1	0	1	
.25	1	0	1	
Unclear	1	0	1	
Total	535	65	600	
P for difference(Fisher's exact) = 0.659				

Association between trial characteristics and using Bayesian plus frequentist methods

Trial characteristics	Odds Ratio	95%CI lower	95%CI Upper	P-value
Sample size enrolled calculated	1.01	0.61	1.68	0.97
Power of trial calculated	0.70	0.23	2.14	0.53
Sample size calculated	1.54	0.85	2.77	0.15
Source of funding reported	1.88	0.88	4.02	0.10
Data monitoring & safety reported	0.74	0.24	2.29	0.60
95% CI reported	1.10	0.48	2.57	0.81
MCID reported	0.49	0.14	1.71	0.27
Interpretation based on 95% confidence interval	0.73	0.28	1.90	0.53
Interpretation based on effect size	0.85	0.48	1.50	0.57
Interpretation based on observed data only	0.24	0.06	0.99	0.048

Association between trial characteristics and using Bayesian plus frequentist methods

Trial characteristics	Odds Ratio	95%CI lower	95%CI Upper	P (OR>=1)
Sample size enrolled calculated	1.15	0.63	1.75	0.65
Power of trial calculated	0.10	0.21	2.14	0.33
Sample size calculated	1.60	0.72	2.77	0.93
Source of funding reported	2.07	0.80	4.02	0.96
Data monitoring & safety reported	0.98	0.21	2.29	0.38
95% CI reported	1.08	0.31	2.57	0.49
MCID reported	0.56	0.04	1.24	0.11
Interpretation based on 95% confidence interval	0.96	0.27	1.90	0.35
Interpretation based on effect size	0.90	0.42	1.44	0.32
Interpretation based on observed data only	0.43	0.03	1.18	0.068

BAYESIAN ANALYSIS

We used a non-informative Cauchy prior with parameters 0 and 2.5 (as recommended by Gelman in <u>https://arxiv.org/pdf/0901.4011.pdf</u>).

We also used Beta with parametres (0.5, 0.5) – this is "Jeffreys non-informative prior" for the Beta distribution and a Dirichlet with all parameters set to 0.5 (again, this is the Jeffreys prior for the Dirichlet distribution).

Essentially the Jeffreys prior is a specific non-informative prior with some good properties.

THANKYOU!

Questions!