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Background



Global and Public Health Trial Characteristics

Typically large

Are run for a long time

Multi-center, logistically challenging

Are funded by the taxpayer or nonprofits

Potentially high impact

Could benefit greatly from saving time and resources

⮚
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Bayesian Adaptive Trial Designs

Are simulation-guided, and are therefore flexible – but also computer-intensive.

Consists of multiple arms and multiple stages with early arm-stopping options.

The decision boundaries are set for the posterior probability of efficacy

for trials testing treatments against a common control, or the posterior probability of superiority

for trials comparing all therapies against each other. These get updated at every interim readout.

Potential gains include earlier EUA application, fewer patients receiving futile treatments, fewer overall
patients treated and shorter run times.

⮚
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Multi-arm, Multi-stage Vaccine Trials



Modelling Assumptions

All arms’ case counts follow Poisson processes.

Vaccine effects (VEs) are measured in terms of the rate reduction relative to control.

Once a certain total number of cases has been recorded, data are unblinded and case distribution
across groups is analyzed.

Some transformation of the VEs can be shown to follow a multinomial distribution.

Using a conjugate Dirichlet prior distribution, the posterior distribution is also Dirichlet.
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The Main Idea

where  is the allocation probability of the  vaccine, and assign  a Dirichlet prior, then

will also follow a Dirichlet distribution, where  denotes the number of infections recorded in the 
vaccine group.

If we define⮚

= ,θi

(1 − )qi VEi

+ (1 − )qctrl ∑K
j=1 qj VEj

qi ith
θ
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Inference on the VEs is achievable via the back-tranform⮚
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What We Did

Generalized the model used by Pfizer/BioNTech to any number of arms with any allocation ratio.

Calculated the joint VE distribution and showed that inference can be restricted to paired vaccine-
placebo comparisons.

Proposed a principled way for choosing a prior distribution.

Derived closed form expressions for all inferential quantities, including .

We can now run 100,000 simulations in ~1 minute on a standard PC.
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Trial Design Example

Three vaccine groups and a common control (placebo).

A  Dunnett allocation ratio to minimize the average VE uncertainty.

We assume VEs of 50%, 37.5% and 25%.

Interim analysis take place when an average of 10.5 events are observed across the remaining arms.

Early stopping due to efficacy occurs if  at any analysis.

Early stopping due to futility occurs if ,  or  in the first, second or third analysis,
respectively.

⮚

⮚ : 1 : 1 : 13–√

⮚

⮚

⮚ > 99.025%peffic

⮚ < 25%peffic 50% 75%
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Mean Median 95% CrI

1.00 1.52 -2.33 0.00 [-16.85; 0.97]

2.00 3.24 -0.55 0.00 [-5.27; 0.88]

5.00 8.42 -0.17 0.00 [-2.01; 0.70]

15.00 25.74 -0.05 0.00 [-0.87; 0.49]

Prior Selection

Prior candidates are required to have a prior probability of efficacy of .

We compare multiple candidates and use summaries and density plots.

⮚ 50%

⮚

αvax αctrl
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A Sample Trial

In this randomly simulated trial, the third vaccine arm was stopped for futility after two analyses

The first vaccine was found to be efficacious after three analyses.

The second vaccine arm completed four analyses without meeting the efficacy threshold.

⮚

⮚
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Posterior Inference

Arm
Stopping
reason

Analysis 1
cases

Analysis 2
cases

Analysis 3
cases

Analysis 4
cases Efficacy Pr(Efficacy|Data) VE [95% CrI]

Control 20 36 57 72

1 Early efficacy 4 10 15 Yes 99.8% 53.4% [20.7%; 74.2%]

2 End of trial 6 17 23 29 No 95.2% 29.8% [-6.3%; 54.8%]

3 Early futility 12 21 No 48.6% -0.9% [-69.7%; 41.4%]

Point and interval estimation is based on the posterior VE distribution –⮚
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Operating Characteristics (100k simulations)

Arm VE Power

All 0% 2.5% 23.9% 53.2% 79.0%

1 50% 81.3% 17.8% 43.1% 70.9%

2 37.5% 50.1% 10.8% 25.9% 50.4%

3 25% 22.8% 10.3% 24.1% 48.2%

P(Stop = 1) P(Stop ≤ 2) P(Stop ≤ 3)

Trial inputs were calibrated for a  type I error rate and  power for a vaccine with  VE.

A high probability of early stopping – but not necessarily fewer doses administered.

⮚ 2.5% ≥ 80% 50%

⮚
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Adaptive Cluster Randomized Trials



Some CRT Background

Trials in which the cluster (e.g., a village) is the randomization unit.

As an example: laying attractive toxic sugar baits outside the village to reduce malaria infections.

Induces two variance components: subject-to-subject and cluster-to-cluster.

The variance inflation is governed by the cluster size and the intrucluster correlation coefficient (ICC).

A large ICC or cluster size can significantly inflate the sample size.

⮚
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What We Did

Proposed the Poisson-Gamma mixture model for CRTs with binary endpoints.

Showed that some transformation of the mean event rates has conjugate beta prior distributions.

Established the mathematical relation between the Gamma random effect parameters and the ICC.

Proposed a principled way for choosing prior distributions.

Derived the empirical Bayes plug-in estimators for the Gamma shape parameters.

We can now run 100,000 simulations in ~10 minutes on a standard PC.
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Modelling Assumptions

For reasonably large clusters of size , and a fairly low event rate , we can model

the number of cases observed in the  cluster or the  arm.

To capture cluster-to-cluster variability, we model

where  is now the mean event rate and  a shape parameter.

The marginal case number distribution can be shown to be negative binomial with

and has a conjugate Beta prior.

⮚ ni ri

∼ Poisson ( )Yij ∣∣rij nirij

jth ith

⮚
, ∼ Gamma ( , / ) ,rij∣∣μi ϕi ϕi μi ϕi

μi ϕi

⮚
= ,pi

μini

+ϕi μini
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95% CrI

0.10

0.15 0.74

[0.22%; 46.29%]

[0.70%; 48.32%]

[1.49%; 41.25%]

[2.56%; 31.67%]

0.20 0.56

[0.18%; 42.06%]

[0.56%; 48.23%]

[1.24%; 44.36%]

[2.21%; 35.14%]

Prior Selection

All priors are subject to satisfying a pre-specified a priori mean event rate (in this case ), assuming
an ICC (here  and ).

We then compare them by their summaries.

⮚ 10%
0.15 0.2

⮚

E[μ] ρ ϕ (a, b)

(2.00, 1.30)

(4.00, 1.59)

(8.00, 2.19)

(16.00, 3.37)

(2.00, 1.22)

(4.00, 1.44)

(8.00, 1.89)

(16.00, 2.78)
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Adaptive Design Example

Suppose that we wish to trial three treatments

Assuming mean event rates of ,  and 

A maximum number of  clusters divided into three analyses

Average cluster size of ,

An arm gets stopped for futility if 

The trial gets stopped if any arm achieves 

We simulate the data with an ICC of 

⮚

⮚ 10% 7.5% 5%

⮚ 550

⮚ 50

⮚ ≤ 1.2%psup

⮚ > 98.8%psup

⮚ 0.15
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A Sample Trial

Here first arm was dropped after the second analysis for futility.

The third treatment was found to be the superior of the three after the third analysis.

⮚

⮚
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Shape Parameter Estimation via Empirical Bayes

The negative binomial model is conditional on knowing the values of the shape parameters .

As plug-in estimates, we propose maximizing the log-marginal likelihood components.

⮚ ϕi

⮚
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Posterior Estimation and Inference

Trt
Analysis 1

Clusters, Cases/Patients
Analysis 2

Clusters, Cases/Patients
Analysis 3

Clusters, Cases/Patients Outcome
Mean event rate

[95% CrI]

1 62, 261/3075 123, 559/6203 Early inferiority 8.9% [7.2%; 11.3%]

2 62, 202/3057 123, 469/6022 213, 844/10558 7.9% [6.6%; 9.6%]

3 62, 206/3059 123, 341/6186 213, 582/10652 Superiority 5.4% [4.3%; 6.9%]
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Operating Characteristics (100K Simulations)

Mean
event rates

Mean no.
of clusters

% of patients
in Arm 1

% of patients
in Arm 2

% of patients
in Arm 3

True
positive rate

False
positive rate

(10.0%, 7.5%, 5.0%) 412.1 20.9% 38.8% 40.3% 80.6% 0.0%

(10.0%, 10.0%, 10.0%) 545.7 33.3% 33.3% 33.3% – 2.0%

(10.0%, 5.0%, 5.0%) 532.0 13.0% 43.5% 43.5% – 9.7%

Note that the “null hypothesis” here includes every scenario where there is no clear-cut winner.

“False positives” include detection of one of two equally effective treatments.

For a “true positive”, we must not only detect difference but also declare the correct winner.

In a standard trial, the 1-2 comparison alone at the 5% level (one-sided) would require 528 clusters.

Also note the proportion of patients receiving the worst treatment.

⮚

⮚

⮚

⮚

⮚
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Concluding Remarks



Famous Last Words

Thank you!

Global health trials could use every bit of efficiency.

Adaptive trial designs provide just that – but require many simulation runs.

We propose innovative, MCMC-free, Bayesian vaccine and cluster randomized trial designs.

Response adaptive randomization (RAR) is unlikely to be applicable here.

Consider time to outcome and enrollment rate: could your trial benefit from adaptations?

Possible extensions: time-varying VE; stepped-wedge CRTs.

Ask us for the preprint!

⮚
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